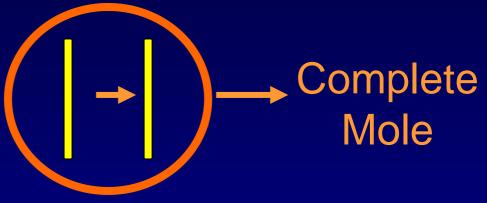
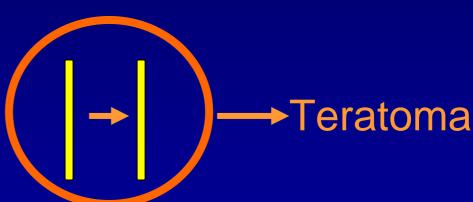

Imprinting diseases and IVF

Øjvind Lidegaard

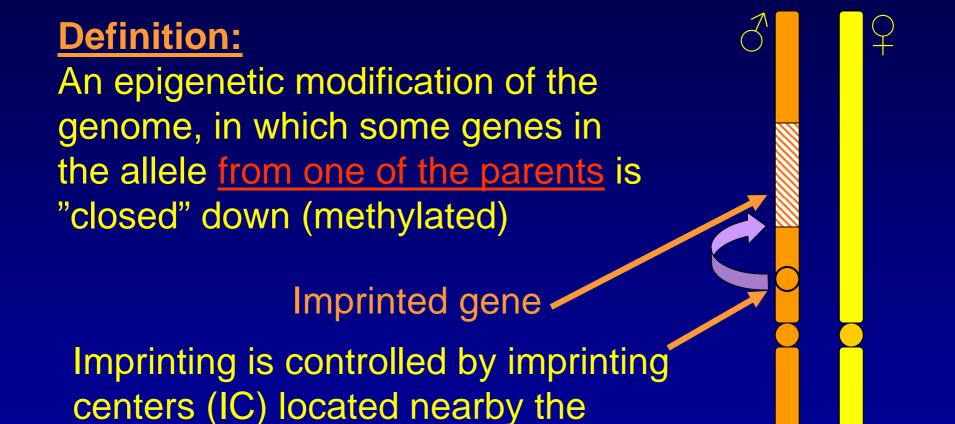

Dept. Obstetrics & Gynaecology Herlev University Hospital Copenhagen, Denmark

What is the difference between a mule and a hinny?



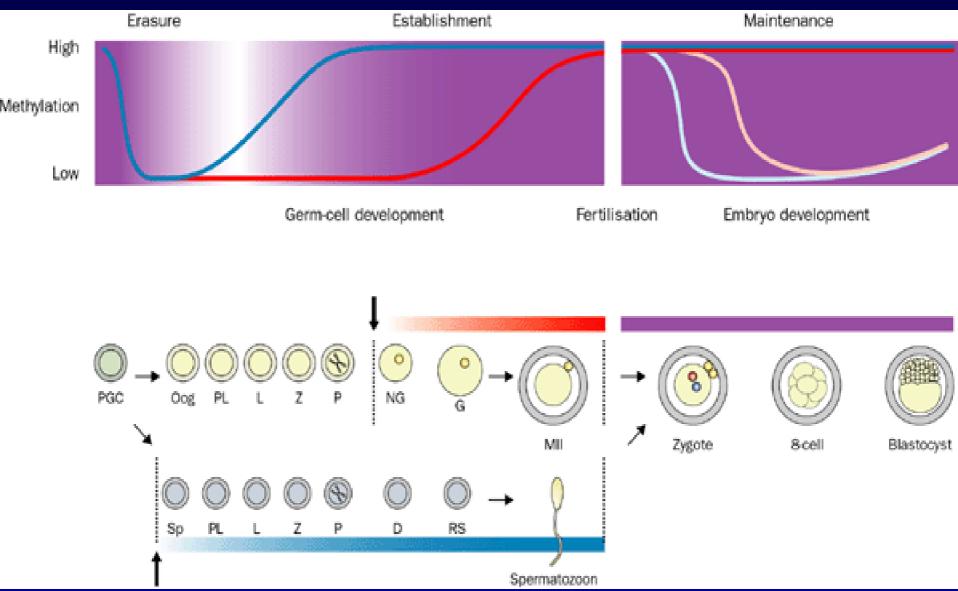
Uniparental-disomia

Egg without nucleus, fertilised by one sperm. Duplication of sperm genome



Duplication of egg genome without fertilisation

Conclusion: Total uniparental disomy has always fatal consequences for the embryo


Genomic imprinting

imprinted areas on the same

chromosome

Imprinting in gameto and embryogenesis

Principal imprinting and modification

Gametogenesis: Principal imprinting process

Day 1: Fertilisation

Day 1-5: Modification of imprinting

Day 5-7: Implantation

Day 5+: Differentiation

Principal: determined by the parental origin.
Modification: controlled by the physical
environment during early stages of cleavage.
Could be a mechanism by which the embryo
adapts to the prevailing physical environment

Imprinting versus differentiation

Imprinting Differentiation

Mono allelic Bi- or mono allelic

Gametogenesis Gametogenesis

Early stages All stages

Both: The genes are closed by methylation and blocked by histones.

Genomic imprinting

Creation of a healthy embryo demands

- A successful meiotic process in parents
- Imprinting of gamete specific genes
- A fertilisation of egg with one spermatozoa
- Paternal as well as a maternal genome
- Epigenetic preservation of imprinted genes during early stages of embryogenesis (first days)
- >1000 other things

Genomic imprinting

- By now we have identified 75 imprinted genes.
 These genes are of significance for
- growth regulation
- placental growth
- embryonic and postnatal development
- brain function
- behaviour, psychological traits
- neoplastic transformation

Li/03

Imprinting diseases 1

Dysregulation of imprinted genes are now described in several human diseases, which are characterised by:

- growth abnormalities
- placental abnormalities
- mental retardation, abn. Psychological traits
- abdominal wall defects
- increased risk of early cancers

Imprinting diseases 2

Specific imprinting diseases in humans

- Beckwith-Wiedemann syndrome (BWS)
 Imprinting disorder on chromosome 11p
- Prader-Willis syndrome (PWS)
 Imprinting disorder on chromosome 15q
- Angelman syndrome (AS)
 Imprinting disorder on chromosome 15q
- Childhood cancers

Li/03

Imprinting diseases 3

Childhood cancers

- Wilms tumour
- Neuroblastoma (m1p and p2)
- Acute myeloblastic leukaemia (p7)
- Rhabdomyosarcoma (m11p)
- Osteosarcoma (m13)

All these diseases are rare; 1-10/10,000 born

Li/03

Growth media and imprinted genes in mouse

- Small changes in physical composition of growth media after in vitro fertilisation have consequences for the embryo
- These consequences are at least partly mediated through an altered imprinting
- These changes during first days after fertilisation are irreversible.

Imprinting diseases and IVF

- Several case-reference studies have suggested a higher proportion of IVF in children with imprinting disorders as compared with a reference population
- The studies are small, insufficiently matched
- No consensus whether ICSI implies a differential risk as compared with conventional IVF

Imprinting disease and IVF Danish National IVF cohort study "DaNIC"

Lidegaard Ø, Pinborg A, Nyboe Andersen A

Aim of the study

- To assess the frequency of imprinting diseases in IVF children as compared with normally concipated children
- To screen IVF children for developmental diseases and compare it with the frequency in normally concipated children

Danish National IVF cohort study Material & methods

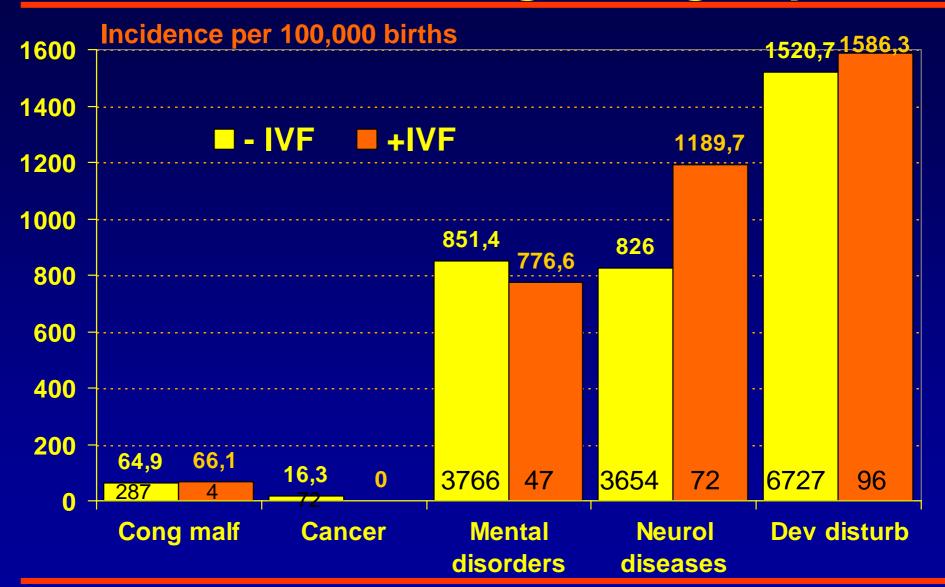
- All singleton children born in DK 1995 2001
- Stratification into three groups:
 No IVF, IVF without ICSI, and IVF with ICSI
- IVF children identified in National IVF registry
- Follow up until July 2003 (or 5 years)
- Diseases identified in National Register of Patients (LPR) and Central Register of Psychiatric Diseases (CRPD)

Danish National IVF cohort study Methodological problems

- Many children with imprinting diseases are not diagnosed with such a disease, and are therefore hidden in unspecified groups of syndromes or developmental diseases.
- Some of these syndromes are rare.
 Therefore inclusion of even all births over seven years may not bring enough IVF children to detect differences in frequency between IVF and non-IVF children

Included diagnosis codes (ICD 10)

Imprinting diseases are expected to be coded in one of five main diagnosis groups.

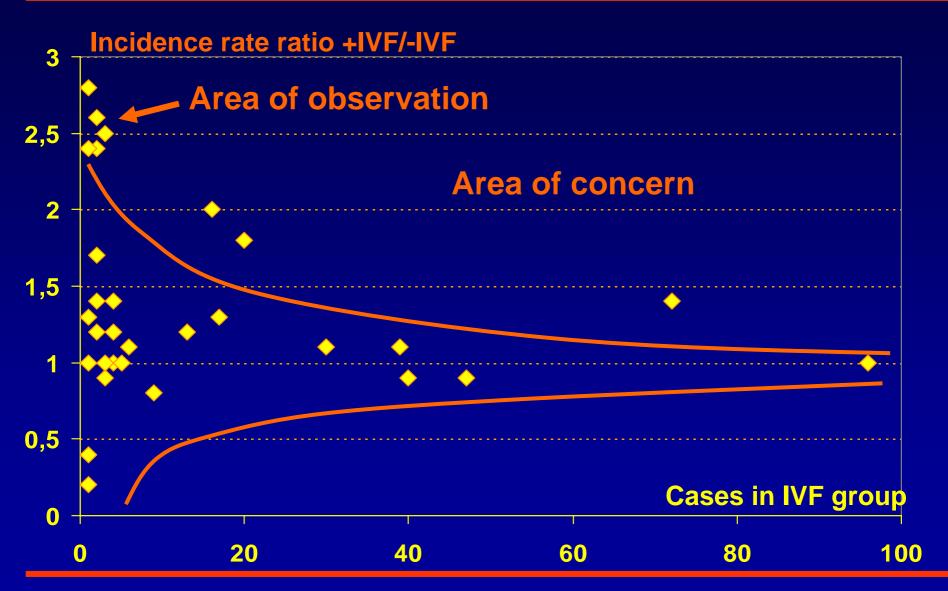

- DC Childhood cancers: Wilms, retinoblastoma
- DF Mental retardation diagnoses
- DG Neurological disease (cerebral palsy)
- DQ Syndromes
- DR Developmental abnormalities

Results: Main diagnosis groups

Group	- IVF	+ IVF
Number of births	442,349	6,052
DC Cancer	72	0
DF Mental retardation	3,766	47
DG Neurological dis.	3,654	72
DQ Congenital syndror	4	
DR Development. Distu	urb 6,727	96
All included diagnoses	14,506	219

Lidegaard et al. Human Reproduction 2005; 20: 950-4

Results: Main diagnosis groups


Danish National IVF cohort study

Results: Specific syndromes/diagnoses

A clinical meaningful difference between non-IVF and IVF group in incidence rate of a specific syndrome demands

- A rate ratio (+IVF/-IVF) well above 1
- A minimum number of cases in IVF group

Results: Specific diagnosis groups

Danish National IVF cohort study

Results: Specific syndromes/diagnoses

Diagnosis	+IVF	- IVF	Ratio
DG47 Sleeping disturb.	16	572	2.0
DG80 Cerebral palsy	20	819	1.8
DG total (neurol. Diseas)	72	3.654	1.4
Observational group:			
DG81 Hemiparesis	3	87	2.5
DG90 Dis of auton.nerv s	sys 1	30	2.4
DQ271 Dwarf growth	2	60	2.4
DR620C Motor retardation	n 1	26	2.8
DR630 Anorexy	2	57	2.6

Danish National IVF cohort study

Results: Specific imprinting diseases

Diagnosis -	IVF	+IVF	Expect
DQ871E Prader Willi Syn	3	O	0.041
DQ871G Russel Silver S	2	O	0.027
DQ873A Beckwith Wieder	n 0	O	0
DC54 Kidney canc. Wilms	s 44	O	0.603
DC692A Neuroblastoma	5	0	0.068
Total	54	0	0.740

Conclusion: Misclassification of many of the specific imprinting syndromes. No indication, however, of a many fold increased risk of imprinting diseases in IVF children.

Discussion: IVF versus other children

- Childhood cancers (DC) are not more frequent in IVF children.
- Mental disturbances/retardation (DF) are not more frequent in IVF children.
- There might be an increased risk of cerebral palsy (DG80) in IVF children as compared with non-IVF children. This was found also in Sweden by Strömberg et al 2002 (OR 2.8)
- The increased frequency of sleeping disturbances (DG47) could be influenced by the higher age of IVF-parents.

Discussion: IVF versus other children

- Syndromes (DQ codes) overall are not more frequent in IVF children.
- Developmental disturbances (DR) are not more frequent in IVF children.

Proposal:

- Systematic follow-up of IVF children according to the same logistics
- Establishment of codes for all imprinting diseases, common to all European countries.

Imprinting & ART: conclusion

In vitro cultured embryos may have their imprinting influenced in a way which may

- Increase the risk of imprinting diseases
- Leave its stamp on imprinting with consequences for
 - fetal development
 - psychical traits of fetus

Imprinting & ART: conclusion

In vitro cultured embryos may have their imprinting influenced in a way which may

- Increase the risk of imprinting diseases
- Leave its stamp on imprinting with consequences for
 - fetal development
 - psychical traits of fetus

Imprinting: Perspectives

- Could be an important adaptive function in phylogenesis and ontogenesis
- More attention to interaction between culture medium and imprinting in future
- Probably a small quantitative impact in IVF
- Potential invalidating influence on stem cell cultures and in vitro maturation
- Could be a new approach to artificial modification of psychological traits in human beings

Imprinting: Actions

- More research on the influence of culture media on fetal outcomes
- Systematic follow-up of IVF children
- Common ICD codes for all imprinting diseases (European)
- Specific attention on IVM outcomes and embryos transferred as blastocysts

Slides on www.lidegaard.dk/slides