The significance of genomic imprinting in assisted reproduction

Øjvind Lidegaard

Gynaecological Clinic -Rigshospitalet Copenhagen University

What is the difference between a mule and a hinny?

Uniparental-disomia

Egg without nucleus, fertilised by one sperm. Duplication of sperm genome

Duplication of egg genome without fertilisation

Conclusion: Total uniparental disomy has always fatal consequences for the pregnancy

Genomic imprinting

Definition:

An epigenetic modification of the genome, in which some genes in the allele from one of the parents are "closed" down (methylated)

Imprinted gene -

Imprinting is controlled by imprinting centers (IC) located nearby the imprinted areas on the same chromosome

Imprinting in gameto and embryogenesis

Gosden et al. Lancet 2003; 361: 1975-77

Principal imprinting and modification

Gametogenesis: Principal imprinting process Day 1: Fertilisation Day 1-5: Modification of imprinting Day 5-7: Implantation Day 5+: Differentiation

Principal: determined by the parental origin. Modification: controlled by the physical environment during early stages of cleavage. Could be a mechanism by which the embryo adapts to the prevailing physical environment

Rycke et al. Hum Reprod 2002; 10: 2487-94.

Imprinting and epigenesis

Epigenetic control is the general closure or activation of genes taking place both during gametogenesis, embryogenesis (differentiation) and in adult life (cell renewal). **Imprinting** is a particular type of epigenetic control in which parental specific alleles are activated or silenced.

Baylin & Shuebel. Nature 2007; 448: 548-9.

The epigenomic era opens

Baylin & Schuebel. Nature 2007; 448: 548-9

Genomic hard- and software

DNA sequence could be considered as the indelible ink that is faithfully transcribed from cell to cell and from generation to generation (Pen – hardware) **Epigenetics** is represented by methyl groups added to cytosine and covalent changes in histone proteins, responsible for differentiation of each single cell. (Pencil remarks-software)

Gosden & Feinberg. N Engl J Med 2007; 356: 731-3 Baylin & Schuebel. Nature 2007; 448: 548-9

Genomic imprinting

- Number of imprinted human genes: >500 ?
 These genes are of significance for at least
- growth regulation
- placental growth
- embryonic and postnatal development
- brain function
- behaviour, psychological traits
- neoplastic transformation

Walter & Paulsen. Sem Cell Develop Biol 2003; 14: 101-10

Imprinting diseases 1

Dysregulation of imprinted genes are now described in several human diseases, which are characterised by:

- growth abnormalities
- placental abnormalities
- mental retardation, abn. psychological traits
- abdominal wall defects
- increased risk of early cancers

Walter & Paulsen. Sem Cell Develop Biol 2003; 14: 101-10

Imprinting diseases 2

Specific imprinting diseases in humans

- Beckwith-Wiedemann syndrome (BWS) Imprinting disorder on chromosome 11p
- Prader-Willis syndrome (PWS)
 Imprinting disorder on chromosome 15q
- Angelman syndrome (AS)
 Imprinting disorder on chromosome 15q
- Childhood cancers

Santos-Reboucas. Eur J Hum Genetics 2006; 1-8

Imprinting diseases 3

Childhood cancers

- Wilms tumour
- Neuroblastoma (m1p and p2)
- Acute myeloblastic leukaemia (p7)
- Rhabdomyosarcoma (m11p)
- Osteosarcoma (m13)

All these diseases are rare; 1-10/10,000 born

Walter & Paulsen. Sem Cell Develop Biol 2003; 14: 101-10

Growth media and imprinted genes in mouse

- Small changes in physical composition of growth media after in vitro fertilisation have consequences for the embryo
- These consequences are at least partly mediated through an altered imprinting
- These changes during first days after fertilisation are irreversible

Khosla et al. Biol Reprod 2001; 64: 918-26

 Several case-reference studies have suggested a higher proportion of IVF in children with imprinting disorders as compared with a reference population

- If ART are more frequent in children with imprinting diseases it could be a result of
- The in vitro culture of the embryos
- Imprinting disturbances in infertile couples
 To address this issue scientifically demands
- Long-term follow up
- Assessment of the molecular mechanism
- Routine registration of the specific imprinting disorders

Case study	Ν	n	Syndr	IVF/ICSI	Ref
DeBaum 03	65	3	BW	3	0.8% AB
Gicquel 03	149	6	BW	4/2	1.3% AB
Maher 03	149	6	BW	3/3	1.2% AB
Halliday 04	37	4	BW	3/1	1/148 MC
Chang 05	341	19	BW	5/5	None
Sutcliffe 06	213	6	BW	1/5	0.8% AB
Cox 02	2	2	AS	0/2	None
Ørstavik 03	1	1	AS	1	None
Ludwig 05	79	3	AS	0/3	None
Sutcliffe 06	384	0	AS	0/0	0.8% AB
Sutcliffe 06	522	2	PWS	0/2	0.8% AB
Moll 03	NA	5	RB	4/1	1.5% AB

Lidegaard et al. Curr Opin Obstet Gynecol 2006; 18: 293-6.

- Several case-reference studies have suggested a higher proportion of IVF in children with imprinting disorders as compared with a reference population
- The studies are small, insufficiently matched
- No consensus whether ICSI implies a differential risk as compared with conventional IVF

Follow-up	ART	Contr	Imprinting dis.		
Study			ART	Contr	
Lidegaard	05 6052	442,349	0	54	
Källen 05	16,280	2,039,943	8 2	NA	

Conclusion:

Minor differences cannot be excluded, but there is not a high increase in risk of imprinting disorders after IVF.

Lidegaard et al. Hum Reprod 2005; 20: 950-4 Källen et al. Birth Defects Res 2005; 73: 162-9

Imprir		and	

Dutch case-reference study Cases: 63 AS, 86 PWS, 71 BWS, total 220. born from 1983 to 2003 Reference: All 4,038,279 born 1983-2003 Cases Siblings Reference TTP>12m 15 141,340 (3.5%) 8 68,651 (1.7%) ART preg 14 8 0.9 1.0 Ratio 0.5**Concl:** No difference in ART prevalence when accounting for infertility.

Doornbos et al. Hum Reprod 2007; 22: 2476-80

Transgenerational transmission

Before conception At conception After conception

Genetic and epigenetic interaction

Possible imprinting diseases

- Autism
- Schizophrenia
- Alzheimer
- Infertility (male)
- Diabetes (IGF-2 disturbances)
- Colon cancer
- Atopic diseases
- Sexual orientation

Santos-Reboucas et al. Eur J Hum Genetics 2007; 15: 10-17 Roman et al. Human Fertility 2006; 9: 171-4

Thank you

The presentation will be available on www.Lidegaard.dk/slides from Friday